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ABSTRACT 
The Center for Population Economics has recently implemented a 
recommender system for computer-assisted coding (CAC) of 
historical occupation descriptions.  The system will be used to 
code occupation descriptions into standard occupation categories.  
We describe the task and the system, and discuss certain 
theoretical and practical issues which have arisen during its 
implementation, as well as their implications for Automated Text 
Categorization (ATC). 

Categories and Subject Descriptors 
I.5.4 [Pattern Recognition]: Applications – Text Processing.  

I.5.5 [Pattern Recognition]: Implementation – Interactive 
Systems.  

J.4 [Social and Behavioral Sciences]: Economics.  

General Terms 
Measurement, Design, Economics, Reliability, Human Factors. 

Keywords 
Text Categorization, Computer-Assisted Coding, k-Nearest 
Neighbor Classification, Machine Learning. 

1. BACKGROUND 

1.1 Data 
As part of a National Institute on Aging program project entitled 
Early Indicators of Later Aging, Disease, and Death, the Center 
for Population Economics (CPE) between 1988 and 2000 
collected a large textual database on the aging of the white 
veterans of the Union Army (UA).  The data, drawn from a 
nationally-representative sample of 39,616 veterans, is intended to 
illuminate secular trends in, and determinants of, morbidity and 
mortality in the first cohort to have reached aged sixty-five in the 
twentieth century.  The UA data consist of verbatim texts 
extracted from military records of the period 1835-1920,[3] and as 
such are replete with non-standard orthographies, 
circumlocutions, and data entry errors.  The more than 25,000 
unique occupational descriptions in the UA data range from 
single-word, or even single-letter tokens (e.g. ‘FARMER’, ‘F’), to 

more colorful and complex descriptors (e.g. ‘CUTTER AND 
LOGGER OF TIMBER’).1

1.2 Code Sets 
For use in economic and epidemiological modeling, raw 
occupational descriptions must be mapped onto discrete, mutually 
exclusive categories.  This task is referred to as ‘occupation 
coding.’  Two standard category sets are currently used for this 
task.  The first set, the Wilcox codes, grew out of studies of labor-
force distribution in the antebellum economy,[8] and contains 
only nine categories.  The second set, the 1950 U.S. Census 
Standard Occupation Codes,[5] is much richer in distinctions (n = 
296), and has a two-level hierarchical organization of sub- and 
super-categories.  Samples of both code sets are shown in Table 1. 

 
Table 1. Sample Codes from Wilcox and 1950 Census Code 

Sets 

Wilcox 
Code Meaning 1950 Cen. 

Code Meaning 

1 Farmer 031 Dancers and 
Dancing Teachers 

2 
Professionals 

and 
Proprietors-I 

032 Dentists 

3 
Professionals 

and 
Proprietors-II 

033 Designers 

4 Artisans 034 Dieticians and 
Nutritionists 

 
 
As can be seen from the table, the 1950 Census codes are much 
narrower, and require extensive training to acquire, while the 
Wilcox codes are less specific, but more historically appropriate. 

1.3 Task Constraints and Previous Processes 
Two constraints on coding practice are imposed by the intended 
analytic purposes of the data: accuracy and 
recoverability/replicability.  First, coding errors must be kept to 
an absolute minimum, so as to avoid introducing noise into the 
dataset.  Second, all original data must be preserved, together with 
the rationale for each descriptor→code mapping; thus, should a 

                                                                 
1 The UA data are free and publicly available through the CPE: 

http://www.cpe.uchicago.edu. 



later scholar choose to quibble with results based on coded 
occupation data, he or she could produce a different code 
mapping. 
To code the existing UA sample given these overarching 
constraints, the CPE employed a laborious manual coding process 
between 1996 and 2001, whereby research assistants wrote 
transformation rules using a specialized regular expression 
language.  The rewrite rules were then iteratively applied to the 
underlying data and edited, until an acceptable code mapping was 
achieved.  For the Wilcox codes, an amorphous team of 
undergraduate research assistants wrote the transformation rules 
over a period of several years.  For the 1950 Census codes, 
because of their complexity, it was necessary to employ a 
graduate economics student for more than one year to accomplish 
the mapping.  This approach was costly, and (more crucially for 
the Early Indicators project) suffered from a lack of consistency 
over time and across the full dataset.  For example, the two 
descriptors shown in Table 2 were coded differently, even though 
presumably the first mapping is the correct one: 

Table 2. Inconsistent Coding Using 1950 Census Codes 

Descriptor Code 
‘ANYTHING SOLDIER CAN 

DO’  970: Laborers (n.e.c.) 

‘ANYTHING SOLDIER 
COULD DO’  

595: Members of the armed 
services 

 
This type of inconsistency is anathema to statistical modelers, as 
it introduces unexplained heterogeneity into the data, and reduces 
the significance of estimates derived from it. 

2. CURRENT EFFORTS 
The CPE is currently expanding its database to include records 
from a sample of more than 6,000 African American veterans of 
the Union Army.  A review of the coding process determined that 
improvements over existing manual coding techniques were 
possible given recent advances in ATC.[6]  A fully automated 
coding system was not selected, because even 90% accuracy was 
deemed too low, given the first constraint on data quality 
mentioned in Section 1.3.  Instead, a computer-assisted coding 
system, known as ‘Recommender,’ has been developed in order to 
achieve the correct balance of the accuracy of human coding with 
the speed and consistency of computerized categorization. 

2.1 CAC System Architecture 
The architecture of the Recommender CAC system is shown in 
Figure 1.  Recommender runs under Solaris 8 on a Sun Fire 280R 
Server with 2 1.015 GHz UltraSparc 3 Cu processors and 2 GB of 
RAM.  The database management system is PostgreSQL, running 
under Red Hat Linux on a separate Pentium II workstation.  The 
classifier training module and the classification engine are both 
implemented in Perl.  The GUI is written in tcl/TK with custom C 
extensions, and runs on either Linux or Windows clients.2   

                                                                 
2 All components of the system are freely available by special 

arrangement. 

 

 
Figure 1. Recommender CAC System Architecture 

The Recommender system works as follows: raw occupational 
descriptions are presented to the user on the left panel of the GUI; 
one to three suggestions for each of the two code sets are 
presented in the center and right-hand panel.  The suggestions are 
generated by first querying the existing rule-base for exact 
matches for the uncoded occupation description; if one or more 
matches are found, associated codes are presented ordered by 
frequency.  If no exact match is found, two k-nearest neighbor 
classifiers are used to select and suggest the most similar 
occupation descriptions in the training set. The coder either 
accepts or changes the recommendations of the CAC system.  
Even though both training and recommendation generation are 
comparatively fast (training time < 1 hour for 25,000 occupation 
descriptions; suggestion generation ≈ 5 seconds per description) 
both are done off-line to improve usability. 

2.2 k-Nearest Neighbor Classification 
The multiclass classifiers are trained on vector-space 
representations formed from features chosen according to the chi-
squared criterion.[10]  Features are chosen from the set of unique 
terms in the training data after stemming using the Porter 
stemmer.  We currently select 80% of the stemmed terms as 
features, much higher than the percentage of features traditionally 
selected in ATC systems for longer texts (e.g. [10] finds 12.5% to 
be the optimal percentage).  We find that selecting lower 
percentages of features leaves certain less common occupation 
categories with no characteristic features at all,3  due to the 
comparative sparseness of the vector space formed from short 
texts.4  Both training vectors and test vectors are formed using 
traditional tf*idf weights.  A minor technical innovation employed 
here is to combine equivalent texts (description tokens) into single 
training vectors, preserving their count information.  This practice 

                                                                 
3 This observation leads us to suspect that using unstemmed terms 

as features might lead to performance improvements, but we 
have yet to test this conjecture. 

4 Short document length has been shown to degrade performance 
in many types of information systems, e.g. [1]. 



has improved processing time by a factor of three, with no 
information loss. 

While we have yet to undertake an exhaustive study of precision-
recall tradeoffs as a function of k, our informal testing has led us 
to establish the current setting of k  = 20, again differing from 
garden-variety k-nn classifiers.  Our empirical results suggest that 
higher values of k sacrifice speed while adding little additional 
accuracy, but at values lower than 20, accuracy declines 
precipitously.  The distance metric employed by the classifier is 
the standard cosine similarity between the vectors.  Up to three 
suggestions are generated, using a simple voting procedure.[9] It 
is possible that more sophisticated techniques of selecting 
recommendations from amongst the nearest neighbors would 
result in higher accuracy (perhaps through the use of category-
specific thresholds) however no such efforts have as yet been 
undertaken. 

3. SYSTEM PERFORMANCE 
The Recommender system’s performance (before human 
correction) has been tested on both the Wilcox coding task and 
the 1950 Census coding task by reserving a subset of the coded 
training data as test data.  3,374 occupational description types 
were used as training data, corresponding to 39,910 tokens.  Test 
results for both tasks are given in Table 3 below, with overall 
results for 1950 Census coding and Wilcox coding, and category-
specific results given for the nine Wilcox occupation categories. 

Table 3. Results of Automated Coding 

Task/Category Accuracy 
(correct/total) Number Tokens 

1950 Census 
Codes Overall 69% 2,177 

Wilcox Codes 
Overall 77% 9,997 

1. Agriculturalist 97% 1,299 
2. Professionals and 

Proprietors-I 85% 852 

3. Professionals and 
Proprietors-II 98% 1,323 

4. Artisans 76% 2,131 
5. Service, Semi-

Skilled, and 
Operative 

79% 1,089 

6. Manual Labor 99% 2,222 
7. Unidentifiable 49% 59 
8. Unproductive 85% 747 
9. Agricultural 

Labor 87% 274 

 

Accuracy was calculated as a percentage of correct responses over 
total responses.  For the Wilcox coding task, accuracy was 
calculated allowing only one guess per test vector: since there are 
only nine total categories in the Wilcox codes, allowing multiple 
predictions rapidly trivializes the performance evaluation.  For 
calculating accuracy of the 1950 Census codes task, if any of the 
first three predictions matched the ground-truth category, the 
response was scored as correct. 

4. IMPLICATIONS 
One of the immediate findings from the results in Table 3 is that 
some occupational categories were more difficult for the system 
to acquire than others, such as Wilcox codes  4, 5, and 7.  The 
same is true of the 1950 Census categories, though space limits 
prevent laying out all the relevant data.  While the existence of 
category-level differences in classifier performance has long been 
noted in passing in the ATC literature, we believe it has important 
implications both for the current project in particular, as well as 
for ATC in general.   
Human coders of the original occupational data also displayed 
category-level differences in consistency.  For example, the 
Wilcox distinction between Professionals and Proprietors I and II, 
as well as the distinction between Artisans and Operatives, were 
both difficult for RAs to master consistently.  We first wished to 
investigate whether the observed category-level differences were 
an artifact of classifier design, or whether the computer classifier 
displayed a similar pattern of confusions to the human pattern.  
Two Wilcox category confusion matrices were created, one from 
the Recommender system, and one from inconsistencies in the 
training data coded by hand.  Multi-dimensional scaling was 
performed on the confusion matrices; the results of MDS in two 
dimensions are shown in Figure 2. 

 
Figure 2: Multidimensional Scaling of Human and Computer 

Confusion Matrices, Wilcox Occupation Codes 
Note: Computer dimension 2 has been inverted for comparison purposes. 

In Figure 2, computer categories are shown by grey crosses, and 
human categories are shown with black dots, both labeled with 
the Wilcox code.  The general relationship of the categories 
within the system appears to be approximately the same for the 
human coders as for the Recommender system. The only 
exception to this statement is for Code 7: Unidentifiable, but there 
is reason to believe that catchall or default categories are not well 
modeled by current machine-learning methods.[4]  We conclude 
that the human and computer coders appear to have learned the 



same general system of categories, as revealed by their  similar 
confusion matrices. 
It thus appears that the category-level differences in classifier 
performance are a property of the data and code sets themselves, 
and not of the Recommender system.  Efforts are currently 
underway to identify determinants of those category-level 
differences.  Linguistic factors, such as mean response length, 
relative category-specific vocabulary size, and category-specific 
word frequency, as well as non-linguistic factors such as mean 
category-specific income and socioeconomic status data, are 
currently being analyzed in order to measure their relative 
contributions to classifier performance. 
The specific implication of this finding for occupation coding 
within the Early Indicators project is as follows.  Coded 
occupation data is typically employed in statistical models as a 
proxy for some combination of wealth, income, socioeconomic 
status, prestige, and education.  If category-level coding accuracy 
is correlated with any of these latent variables, then the coding 
process itself will introduce bias into the data.  We are currently 
measuring the correlation between household wealth, the Duncan 
Socio-economic Index (SEI), and category-specific accuracy 
scores.  Should either correlation prove significant, additional 
corrective steps will need to be put into the coding process to 
‘level the playing field’ for all occupational categories.  From a 
more general, human factors perspective, it will be desirable to 
design CAC systems in such a way as to help them focus the 
human coder’s attention on potentially problematic cases, while 
still allowing them to speed through less ambiguous cases.  
Incorporating category-specific notions of suggestion confidence 
into the GUI is an obvious first step toward this goal. 
The general implication of this finding for ATC is that evaluation 
metrics should be enriched to incorporate category-specific 
difficulty level.  In other words, when scoring a CAC system for 
the Wilcox occupation codes, the system should get more points 
for each correct answer in category 7 than for each correct answer 
in category 6.  Such information is not captured by any widely 
accepted ATC evaluation metric, except only very imprecisely by 
macro-averaged precision/recall.  Without incorporating category-
specific difficulty level, it will be impossible to define a stable, 
replicable measurement system for classifier performance. 

5. RELATED WORK 
The task of automating occupation coding can be seen as a subset 
of Automated Text Categorization, which is a well-described task 
(see e.g. [2], [6], [9]).  Within ATC, occupation coding is most 
similar to Automated Survey Coding (ASC), which also operates 
on short texts for social-science research, and where accuracy 
(non-introduction of noise into the data) is paramount.  The 
results presented here are an improvement over [7], though on a 
different dataset, and are comparable to results recently reported 
in [4]. Note that the Recommender system only accidentally 
shares a name with recommender systems used in e-commerce, 
but otherwise is quite different.   

6. SUMMARY AND FUTURE RESEARCH 
We have presented a description of the Recommender CAC 
system, which is currently being used at the CPE for historical 

occupation coding.  We also have presented test results of the 
accuracy of the system’s predictions.  We discussed category-
level differences in system performance, and the problems they 
raise for ATC scoring metrics as well as for the use of coded 
occupation data in statistical models which include 
socioeconomic status. 
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